COVID-19 is an emerging, rapidly evolving siituation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

OCCPR: A Leader in Cancer Proteomics and Proteogenomics

The mission of the NCI’s Office of Cancer Clinical Proteomics Research (OCCPR) is to improve prevention, early detection, diagnosis, and treatment of cancer by enhancing the understanding of the molecular mechanisms of cancer, advance proteome and proteogenome science and technology development through community resources (data and reagent), and accelerate the translation of molecular findings into the clinic. This is achieved through OCCPR-supported programs such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC), partnerships with Federal agencies, and collaborations with international organizations/institutions.

The International Cancer Proteogenome Consortium

International Cancer Proteogenome Consortium

Learn about ICPC and how the consortium is breaking down silos to advance proteogenomic cancer research worldwide.

CPTAC Researchers Expand the use of MSFragger to Search N- and O-linked Glycopeptides

CPTAC researchers out of the University of Michigan have hit another home run. The Nesvizhskii lab, developer of the FragPipe proteomics pipeline, has developed an extension of its MSFragger flagship software to now identify N- and O-linked glycopeptides. The study was recently published in Nature ...


NCI’s International Cancer Proteogenome Consortium Welcomes Three New Member Institutions in the Global Fight Against Cancer

The National Cancer Institute (NCI) of the National Institutes of Health is pleased to announce the signing of two new memoranda of understanding (MOUs) for international cancer research and care, as well as new efforts in the emerging scientific area of proteogenomics for precision oncology. MOUs ...


Aggressive Brain Tumor Mapped in Genetic, Molecular Detail

Glioblastoma is among the most aggressive and devastating of cancers. While rare compared with other cancers, it’s the most common type of brain cancer. Even with intensive therapy, relatively few patients survive longer than two years after diagnosis, and fewer than 10% of patients survive beyond ...


Dysregulation of Glycosylation in Prostate Cancer Cells Affect Extracellular Vesicle Proteome

Prostate cancer screening is typically done by evaluation of levels of prostate-specific antigens (PSA). Unfortunately, its effectiveness in stratifying low risk patients from those with aggressive (AG) prostate cancer is poor. Localized in the Golgi, α (1,6) fucosyltranferase (FUT8), a ...


Proteogenomics Offers Insight to Treating Head and Neck Squamous Cell Carcinoma

Proteogenomic analysis may offer new insight into matching cancer patients with an effective therapy for their particular cancer. A new study identifies three molecular subtypes in head and neck squamous cell carcinoma (HNSCC) that could be used to better determine appropriate treatment.


Well-Known Oncogenic Mutations ErbB2/Her2 May Also Play A Role in Leukemogenesis

Activating point mutations in ErbB/Her2 receptor tyrosine kinases have an infamous role in promoting oncogenesis across several different cancers, including breast and lung. Heterodimer activation of the ErbB2/ErbB3 oncogenic unit induces cancer cell proliferation via PI3K/AKT signaling pathways.


In Case You Missed It: CPTAC Junior Investigator Spotlight (Part 2)

In case you missed it, this final article (part 2 of 2) in the Investigator Spotlight Series, developed and written by Dr. Dawn Hayward, Office Clinical Cancer Proteomic Research (OCCPR) NCI Communications Fellow, highlights our up and coming Clinical Proteomic Tumor Analysis Consortium (CPTAC) ...


First Large-scale, Multicenter Proteogenomic Analysis Offers New Insights Into Pediatric Brain Tumor Biology

A comprehensive “proteogenomic” analysis of the proteins, genes, and RNA transcription involved in pediatric brain tumors has yielded a more complete understanding of these tumors, which are the leading cause of cancer-related deaths in children. The results could help physicians more accurately ...


Proteogenomics Enhances the Identification of Therapeutic Vulnerabilities in Breast Cancer

Researchers at Baylor College of Medicine, the Broad Institute of MIT and Harvard and other institutions have applied powerful proteogenomics approaches to better understand the biological complexity of breast cancer. With this approach, the researchers were able to propose more precise diagnostics ...


Evaluating Biomarkers in Metastatic Breast Cancer Bone Biopsies Without Decalcification

In a recent publication in the journal Clinical Chemistry, CPTAC investigators from Fred Hutchinson Cancer Research Center described a robust technique for evaluating biomarker expression of key receptors in patients with breast cancer bone metastasis using non-decalcified bone biopsies in immuno ...


Pages