COVID-19 is an emerging, rapidly evolving siituation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

OCCPR: A Leader in Cancer Proteomics and Proteogenomics

The mission of the NCI’s Office of Cancer Clinical Proteomics Research (OCCPR) is to improve prevention, early detection, diagnosis, and treatment of cancer by enhancing the understanding of the molecular mechanisms of cancer, advance proteome and proteogenome science and technology development through community resources (data and reagent), and accelerate the translation of molecular findings into the clinic. This is achieved through OCCPR-supported programs such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC), partnerships with Federal agencies, and collaborations with international organizations/institutions.

The International Cancer Proteogenome Consortium

International Cancer Proteogenome Consortium

Learn about ICPC and how the consortium is breaking down silos to advance proteogenomic cancer research worldwide.

CPTAC Announces New PCC, PGDAC, and PTRC Teams

This month, the Office of Cancer Clinical Proteomics Research (OCCPR) at the National Cancer Institute (NCI), part of the National Institutes of Health, has reaffirmed its commitment to furthering proteogenomics research by announcing the next round of Proteome Characterization Center (PCC; RFA-CA-21...


NCI Welcomes Renewed Commitments to the Cancer Moonshot with Japan and the Republic of Korea

The National Cancer Institute (NCI) of the National Institutes of Health is pleased to announce the renewal of three separate collaborations with Japan and the Republic of Korea (ROK), affirming the two countries’ commitment to international cancer research and care, expanding efforts in the emerging...


Proteogenomic Characterization of In vivo Protein Complexes via Chemical Cross-Linking and Mass Spectrometry

Protein complexes are a fundamental component of physiological and pathological processes. Despite organisms having a limited number of genes and therefore a finite number of proteins at their disposal, the number of possible combinations amongst these proteins is essentially inexhaustible; myriad...


Young Scientist Highlight: Aniket Dagar

The following is the transcript of an interview conducted to highlight promising undergraduate student researcher Aniket Dagar from University of Michigan. Aniket was recently awarded a meritorious poster award for the poster he presented at the 2022 American Association for Cancer Research (AACR)...


CPTAC Glycoproteomic Researchers Develop "Peptide-First" Multi-Attribute Glycan Identification Method

Glycosylation is critical for a wide range of biological processes and is implicated in numerous diseases. Analysis of the glycoproteome has the potential to reveal a wealth of clinical insights, but the heterogeneity of glycosylation makes this analysis difficult. Because of the analytical...


Machine Learning-Derived Metrics Enable Computational Method Comparison in Phosphoproteomics Research

Protein phosphorylation dysregulation has been recognized as a key feature of several diseases, especially cancer. In recent years, phosphoproteomic research has revealed novel, effective biomarkers and drug targets for disease prognosis and treatment. Tandem mass spectrometry (MS/MS)-based...


Proteogenomics Provides New Insights into Intrahepatic Cholangiocarcinoma

Intrahepatic cholangiocarcinoma (iCCA) is the second-most common primary liver tumor and has a low 5-year survival rate of 15%. Treatment of iCCA is particularly difficult due to its markedly aggressive progression, late symptom presentation, and early metastasis. In order to improve...


CPTAC Researchers Identify CPT1A as a Potential Therapeutic Target in Platinum-Refractory, High-Grade Serous Ovarian Cancer Patients

At present, typical treatment for patients with high-grade serous ovarian cancer (HGSOC) is surgical debulking coupled with platinum-based chemotherapy. Despite the majority of HGSOCs being sensitive to platinum-based therapy initially, most become resistant over the course of treatment. The...


CPTAC Researchers Detect Fraud in Large-Scale Molecular Omics Datasets with Exceptional Accuracy Using Machine Learning

Modern computational tools for data collection and analysis have revolutionized how scientists are able to research and respond to problems. While the growing number of large, public data sets is a great boon for researchers, the accessibility of these resources can introduce quality and security...


CPTAC Researchers Develop a Novel, Targeted Mass Spectrometry Assay Panel that Enables Quantification of Immunomodulatory Proteins

Immunotherapies are revolutionizing modern cancer care, but at present, many technologies do not accurately quantify the myriad soluble proteins in the tumor microenvironment which impact immunity. This, in turn, contributes to the pervasiveness of patient resistance and immune-related adverse events...


Pages