Eleven experts were interviewed in a series of videos titled Perspectives in Proteomics at the Human Proteome Organization World Congress (HUPO 2017) in Dublin, Ireland this past fall.
COVID-19 is an emerging, rapidly evolving situation.
What people with cancer should know: https://www.cancer.gov/coronavirus
Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers
Get the latest public health information from CDC: https://www.coronavirus.gov
Get the latest research information from NIH: https://www.nih.gov/coronavirus
All | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010
Displaying 101 - 120 of 203Eleven experts were interviewed in a series of videos titled Perspectives in Proteomics at the Human Proteome Organization World Congress (HUPO 2017) in Dublin, Ireland this past fall.
The National Cancer Institute’s (NCI) Office of Cancer Clinical Proteomics Research, part of the National Institutes of Health, along with the Indian Institute of Technology Bombay (IITB) and Tata Memorial Centre (TMC) have signed a Memorandum of Understanding (MOU) on clinical proteogenomics cancer research. The MOU between NCI, IITB, and Tata Memorial Centre represents the thirtieth and thirty-first institutions and the twelfth country to join the International Cancer Proteogenome Consortium (ICPC). The purpose of the...
In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.
An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory breast study data. The goal of the study was to comprehensively characterize the proteome and phosphoproteome on approximately 100 prospectively collected breast tumor and adjacent normal tissues.
...Precision medicine is an approach that allows doctors to understand how a patient's genetic profile may cause cancer to grow and spread, leading to a more personalized treatment strategy based on molecular characterization of a person's tumor. However, precision medicine as a genomics-based approach does not yet apply to all patients because genetic mutations do not always lead to changes of the corresponding proteins. Therefore, integrating ge...
Mutations in the RAS genes — KRAS, HRAS, and NRAS — have been identified in approximately 30% of all human cancers. While RAS gene family members encode proteins that are pivotal for cytoplasmic cell signaling, RAS oncogenes
Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.
The Office of Cancer Clinical Proteomics Research at the National Cancer Institute, part of the United States National Institutes of Health, is spearheading the preparationand training of the proteogenomic research workforce on an international scale.
Breast cancer is the second most common cancer in women living in the United States, with triple-negative breast cancer (TNBC) accounting for approximately 15% of diagnoses. While chemotherapy is the standard-of-care in TNBC, resistance is common and associated with poor prognosis.
A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying diagnostics and therapies that will improve patients’ lives. Because a comprehensive molecular view of cancer is important for ultimately guiding treatment, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) has released the cancer proteome confirmatory ovarian study data sets.
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) is pleased to announce that teams led by Jaewoo Kang (Korea University), and Yuanfang Guan with Hongyang Li (University of Michigan) as the best performers of the NCI-CPTAC DREAM Proteogenomics Computational Challenge. Over 500 participants from 20 countries registered for the Challenge, which offered $25,000 in cash awards contributed by the NVIDIA Foundation through its Compute the Cure initiative.
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory colon study data. The goal of the study is to analyze the proteomes of approximately 100 confirmatory colon tumor patients, which includes tumor and adjacent normal samples, with liquid chromatography-tandem mass spectrometry (LC-MS/MS) global proteomic and phosphoproteomic profiling.
Liquid chromatography tandem-mass spectrometry (LC-MS/MS)- based methods such as isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT) have been shown to provide overall better quantification accuracy and reproducibility over other LC-MS/MS techniques. However, large scale projects like the Clinical Proteomic Tumor Analysis Consortium (CPTAC) require comparisons across many genomically characterized clinical specimens in a single study and often exceed the capability of traditional iTRAQ-based quantification.
Multi-omics analysis has grown in popularity among biomedical researchers given the comprehensive characterization of thousands of molecular attributes in addition to clinical attributes. Several data portals have been devised to make these datasets directly available to the cancer research community. However, none of the existing data portals allow systematic exploration and interpretation of the complex relationships between the vast amount of clinical and molecular attributes. CPTAC investigator Dr.
The November 1, 2017 issue of Cancer Research is dedicated to a collection of computational resource papers in genomics, proteomics, animal models, imaging, and clinical subjects for non-bioinformaticists looking to incorporate computing tools into their work. Scientists at Pacific Northwest National Laboratory have developed P-MartCancer, an open, web-based interactive software tool that enables statistical analyses of peptide or protein data generated from mass-spectrometry (MS)-based global proteomics experiments.
Researchers estimate that approximately 30% of all human cancers are driven by RAS oncogenes. Mutated RAS genes are responsible for making RAS proteins that support cancer development. While anti-RAS therapies may have potential clinical benefit, researchers yet do not understand how the four RAS protein isoforms, KRAS4A, KRAS4B, HRAS, and NRAS, drive malignant phenotypes. Well-characterized and defined reagents like antibodies are central to reproducibility in biomedical research and necessary for future RAS studies.
The Human Proteome Organization (HUPO) has released a video of the keynote speech given by the 47th Vice President of the United States of America Joseph R. Biden Jr. at the HUPO2017 Global Leadership Gala. Under the gala theme “International Cooperation in the Fight Against Cancer,” Biden recognized cancer as a collection of related diseases, the importance of data sharing and harmonization, and the need for collaboration across scientific disciplines as inflection points in cancer research.
The National Cancer Institute Office of Cancer Clinical Proteomics Research, through its prime contract with Leidos Biomedical Research Inc.
The National Cancer Institute's (NCI) Office of Cancer Clinical Proteomics Research, part of the National Institutes of Health, and Korea University (KU) located in The Republic of Korea have signed a Memorandum of Understanding (MOU) in clinical proteogenomics cancer research. The MOU between NCI and KU represents the twenty-ninth institution and eleventh country to join the continued effort of the International Cancer Proteogenome Consortium (ICPC), an effort catalyzed through the vision of the 47th Vice President of the United States Joseph R. Biden, Jr. and the Cancer Moonshot.
Dr. Henry Rodriguez, director of the Office of Cancer Clinical Proteomics Research, has been recognized as the recipient of the Chair’s Inspirational Award by the Mass Spectrometry and Separation Sciences for Laboratory Medicine Division (MSSS), American Association for Clinical Chemistry (AACC).