COVID-19 is an emerging, rapidly evolving siituation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

OCCPR: A Leader in Cancer Proteomics and Proteogenomics

The mission of the NCI’s Office of Cancer Clinical Proteomics Research (OCCPR) is to improve prevention, early detection, diagnosis, and treatment of cancer by enhancing the understanding of the molecular mechanisms of cancer, to advance proteome and proteogenome science and technology development through community resources (data and reagents), and to accelerate the translation of molecular findings into the clinic. This is achieved through extramural programs such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC), partnerships with Federal agencies, collaborations with international organizations/institutions, and intramural reference laboratories such as the Antibody Characterization Lab and Clinical Proteomic Characterization Lab.

The International Cancer Proteogenome Consortium

International Cancer Proteogenome Consortium

Learn about ICPC and how the consortium is breaking down silos to advance proteogenomic cancer research worldwide.

Get Ready to Join the precisionFDA NCI-CPTAC Multi-Omics Challenge

In biomedical research, sample mislabeling or incorrect annotation has been a long-standing problem that contributes to irreproducible results and invalid conclusions. These problems are particularly prevalent in large scale multi-omics studies where human errors could arise during sample...


CPTAC Optimizes Proteomic Workflow for Cancer Research

In recent years, proteomic technologies have emerged as invaluable tools in cancer research. Next-generation mass spectrometry (NGMS) is being used to study cancer biology, while providing the cancer research community with a growing body of biological knowledge that may lead to more effective drug...


Agarwal Laboratory Demonstrates a Potential Therapeutic Strategy for Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a heterogenous malignancy that stems from the production of abnormal white blood cells, platelets, or red blood cells in the bone marrow. It is estimated that 19,520 new...


Reminder: NCI Requests Cancer Targets for Monoclonal Antibody Production and Characterization

In an effort to improve rigor and reproducibility, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for monoclonal antibody production and...


Video Release: Perspectives in Proteomics - Interview with Dr. Henry Rodriguez

Eleven experts were interviewed in a series of videos titled Perspectives in Proteomics at the Human Proteome Organization World Congress (HUPO 2017) in Dublin, Ireland this past fall.


Indian Institute of Technology Bombay and Tata Memorial Centre Join the International Efforts in Clinical Proteogenomics Cancer Research

The National Cancer Institute’s (NCI) Office of Cancer Clinical Proteomics Research, part of the National Institutes of Health, along with the Indian Institute of Technology Bombay (IITB) and Tata Memorial Centre (TMC) have signed...


NCI Requests Cancer Targets for Monoclonal Antibody Production and Characterization

In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein...


CPTAC Releases Cancer Proteome Confirmatory Breast Study Data

An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical...


Rodriguez and Pennington Address Proteogenomics and Data Sharing in the Journal Cell

Precision medicine is an approach that allows doctors to understand how a patient's genetic profile may cause cancer to grow and spread, leading to a...


Northwestern’s Kelleher Laboratory Develops Top-Down KRAS Isoform Assay to Detect Protein Mutations and Modifications

Mutations in the RAS genes — KRAS, HRAS, and NRAS — have been identified in approximately 30% of all human cancers. While RAS gene family members encode proteins that are pivotal for cytoplasmic cell signaling, RAS oncogenes


Pages