COVID-19 is an emerging, rapidly evolving siituation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

CPTAC and FDA publish findings of a community effort to identify and correct mislabeled samples in multi-omics studies

In biomedical research, sample mislabeling or incorrect annotation has been a long-standing issue contributing to irreproducible results and invalid conclusions. These issues are particularly prevalent in large scale multi-omics studies, in which multiple different omics experiments are carried out at different time periods and/or in different labs and human errors can arise during sample transferring, sample tracking, large-scale data generation, and data sharing/management.

CPTAC Assists with CLSI C64: Advancing Quantitative Protein/Peptide Mass Spectrometry Tests Towards Medical Laboratories

Protein/Peptide mass spectrometry (MS) is an enabling technology that is ideally suited for precision diagnostics, due to its quantitative measurements that can be multiplexed and its ability to directly identify proteoforms. As a result, interest on the widespread implementation of quantitative protein MS tests transitioning into medical laboratories is growing. However, this adoption in medical laboratories faces hurdles, such as consensus guidelines and requirements that ensure accurate measurements.

CPTAC Helps to Identify New Roles for TGFβ in the DNA Damage Response

TGFβ is a cytokine with many, often paradoxical, roles in cancer biology. Acting as a tumor suppressor, TGFβ exerts negative control on epithelial cell proliferation - a function that tumor cells must overcome in order to progress to malignant disease. On the other hand, TGFβ also acts as a pro-tumorigenic factor, promoting malignant phenotypes such as invasion, and exerting pro-tumor effects on components of the tumor microenvironment, such as suppression of anti-tumor immune responses.

CPTAC Researchers Expand the use of MSFragger to Search N- and O-linked Glycopeptides

CPTAC researchers out of the University of Michigan have hit another home run. The Nesvizhskii lab, developer of the FragPipe proteomics pipeline, has developed an extension of its MSFragger flagship software to now identify N- and O-linked glycopeptides. The study was recently published in Nature Methods. The new mode, MSFragger-Glyco, allows researchers to have the same ultrafast and sensitive search for glycopeptide spectrum matches, as with the original MSFragger software.

NCI’s International Cancer Proteogenome Consortium Welcomes Three New Member Institutions in the Global Fight Against Cancer

The National Cancer Institute (NCI) of the National Institutes of Health is pleased to announce the signing of two new memoranda of understanding (MOUs) for international cancer research and care, as well as new efforts in the emerging scientific area of proteogenomics for precision oncology. MOUs establish agreements to work together in clinical cancer research and in the development of standards and solutions for this science discipline being advanced by both organizations.

Aggressive Brain Tumor Mapped in Genetic, Molecular Detail

Glioblastoma is among the most aggressive and devastating of cancers. While rare compared with other cancers, it’s the most common type of brain cancer. Even with intensive therapy, relatively few patients survive longer than two years after diagnosis, and fewer than 10% of patients survive beyond five years. Despite extensive studies focused on genomic features of glioblastoma, relatively little progress has been made in improving treatment for patients with this deadly disease.

Dysregulation of Glycosylation in Prostate Cancer Cells Affect Extracellular Vesicle Proteome

Prostate cancer screening is typically done by evaluation of levels of prostate-specific antigens (PSA). Unfortunately, its effectiveness in stratifying low risk patients from those with aggressive (AG) prostate cancer is poor. Localized in the Golgi, α (1,6) fucosyltranferase (FUT8), a glycotransferase responsible for catalyzing the addition of fucose onto glycoprotein, has been previously shown to have a role in cell motility and invasiveness, and its over expression has been shown to associated with AG prostate cancer. 

Proteogenomics Offers Insight to Treating Head and Neck Squamous Cell Carcinoma

Proteogenomic analysis may offer new insight into matching cancer patients with an effective therapy for their particular cancer. A new study identifies three molecular subtypes in head and neck squamous cell carcinoma (HNSCC) that could be used to better determine appropriate treatment. The research led by Baylor College of Medicine, Johns Hopkins University and the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) is published in the journal Cancer Cell.

Pages