COVID-19 is an emerging, rapidly evolving siituation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

CPTAC Evaluates SEER Repository Tissues as a Resource for Population-Based Cancer Proteomic Studies

Next-generation mass spectrometry (NGMS) has become a powerful tool for protein identification and quantification from prospectively collected fresh frozen or optimal cutting temperature embedded specimens. However, limitations due to supply, accessibility, and delay of clinical information and outcomes from prospectively collected specimens allow researchers to consider the use of banked specimens.

Get Ready to Join the precisionFDA NCI-CPTAC Multi-Omics Challenge

In biomedical research, sample mislabeling or incorrect annotation has been a long-standing problem that contributes to irreproducible results and invalid conclusions. These problems are particularly prevalent in large scale multi-omics studies where human errors could arise during sample transferring, sample tracking, large-scale data generation, and data sharing/management. 

Reminder: NCI Requests Cancer Targets for Monoclonal Antibody Production and Characterization

In an effort to improve rigor and reproducibility, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for monoclonal antibody production and distribution to the scientific community. The program from The Office of Cancer Clinical Proteomics Research provides well-characterized

Indian Institute of Technology Bombay and Tata Memorial Centre Join the International Efforts in Clinical Proteogenomics Cancer Research

The National Cancer Institute’s (NCI) Office of Cancer Clinical Proteomics Research, part of the National Institutes of Health, along with the Indian Institute of Technology Bombay (IITB) and Tata Memorial Centre (TMC) have signed a Memorandum of Understanding (MOU) on clinical proteogenomics cancer research. The MOU between NCI, IITB, and Tata Memorial Centre represents the thirtieth and thirty-first institutions and the twelfth country to join the International Cancer Proteogenome Consortium (ICPC). The purpose of the MOU is to facilitate scientific and programmatic collaborations between NCI, IITB, and TMC in basic and clinical proteogenomic studies leading to patient care and public dissemination and information sharing to the research community.

CPTAC Releases Cancer Proteome Confirmatory Breast Study Data

An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory breast study data. The goal of the study was to comprehensively characterize the proteome and phosphoproteome on approximately 100 prospectively collected breast tumor and adjacent normal tissues.

Rodriguez and Pennington Address Proteogenomics and Data Sharing in the Journal Cell

Precision medicine is an approach that allows doctors to understand how a patient's genetic profile may cause cancer to grow and spread, leading to a more personalized treatment strategy based on molecular characterization of a person's tumor. However, precision medicine as a genomics-based approach does not yet apply to all patients because genetic mutations do not always lead to changes of the corresponding proteins. Therefore, integrating genomics and proteomics data, or proteogenomics, presents as a new approach that may help make precision medicine a more effective treatment option for patients.

Pages