COVID-19 is an emerging, rapidly evolving situation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

OCCPR: A Leader in Cancer Proteomics and Proteogenomics

The mission of the NCI’s Office of Cancer Clinical Proteomics Research (OCCPR) is to improve prevention, early detection, diagnosis, and treatment of cancer by enhancing the understanding of the molecular mechanisms of cancer, advance proteome and proteogenome science and technology development through community resources (data and reagent), and accelerate the translation of molecular findings into the clinic. This is achieved through OCCPR-supported programs such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC), partnerships with Federal agencies, and collaborations with international organizations/institutions.

The International Cancer Proteogenome Consortium

International Cancer Proteogenome Consortium

Learn about ICPC and how the consortium is breaking down silos to advance proteogenomic cancer research worldwide.

NCI Requests Cancer Targets for Monoclonal Antibody Production and Characterization

In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.


CPTAC Releases Cancer Proteome Confirmatory Breast Study Data

An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory breast study data. The goal of the study was to comprehensively characterize the proteome and phosphoproteome on approximately 100 prospectively collected breast tumor and adjacent normal tissues.


Rodriguez and Pennington Address Proteogenomics and Data Sharing in the Journal Cell

Precision medicine is an approach that allows doctors to understand how a patient's genetic profile may cause cancer to grow and spread, leading to a more personalized treatment strategy based on molecular characterization of a person's tumor. However, precision medicine as a genomics-based approach does not yet apply to all patients because genetic mutations do not always lead to changes of the corresponding proteins. Therefore, integrating...


Northwestern’s Kelleher Laboratory Develops Top-Down KRAS Isoform Assay to Detect Protein Mutations and Modifications

Mutations in the RAS genes — KRAS, HRAS, and NRAS — have been identified in approximately 30% of all human cancers. While RAS gene family members encode proteins that are pivotal for cytoplasmic cell signaling, RAS oncogenes


CPTAC Develops Fit-for-Purpose Multiplex Immuno-MRM Assay for Profiling the DNA Damage Response Pathway

Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.


ICPC Pilots International Student Training, Paving a Path for Tomorrow’s Cancer Researchers

The Office of Cancer Clinical Proteomics Research at the National Cancer Institute, part of the United States National Institutes of Health, is spearheading the preparationand training of the proteogenomic research workforce on an international scale.


CPTAC Identifies Novel Resistant Mechanism to PI3K Inhibitor in Triple Negative Breast Cancers

Breast cancer is the second most common cancer in women living in the United States, with triple-negative breast cancer (TNBC) accounting for approximately 15% of diagnoses. While chemotherapy is the standard-of-care in TNBC, resistance is common and associated with poor prognosis.


CPTAC Releases Cancer Proteome Confirmatory Ovarian Study Data

A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying diagnostics and therapies that will improve patients’ lives. Because a comprehensive molecular view of cancer is important for ultimately guiding treatment, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) has released the cancer proteome confirmatory ovarian study data sets.


Best Performers Announced for the NCI-CPTAC DREAM Proteogenomics Computational Challenge

The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) is pleased to announce that teams led by Jaewoo Kang (Korea University), and Yuanfang Guan with Hongyang Li (University of Michigan) as the best performers of the NCI-CPTAC DREAM Proteogenomics Computational Challenge. Over 500 participants from 20 countries registered for the Challenge, which offered $25,000 in cash awards contributed by the NVIDIA Foundation through its Compute the Cure initiative.


CPTAC Releases Cancer Proteome Confirmatory Colon Study Data

The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory colon study data. The goal of the study is to analyze the proteomes of approximately 100 confirmatory colon tumor patients, which includes tumor and adjacent normal samples, with liquid chromatography-tandem mass spectrometry (LC-MS/MS) global proteomic and phosphoproteomic profiling.


Pages