COVID-19 is an emerging, rapidly evolving situation.

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.coronavirus.gov

Get the latest research information from NIH: https://www.nih.gov/coronavirus

OCCPR: A Leader in Cancer Proteomics and Proteogenomics

The mission of the NCI’s Office of Cancer Clinical Proteomics Research (OCCPR) is to improve prevention, early detection, diagnosis, and treatment of cancer by enhancing the understanding of the molecular mechanisms of cancer, advance proteome and proteogenome science and technology development through community resources (data and reagent), and accelerate the translation of molecular findings into the clinic. This is achieved through OCCPR-supported programs such as the Clinical Proteomic Tumor Analysis Consortium (CPTAC), partnerships with Federal agencies, and collaborations with international organizations/institutions.

The International Cancer Proteogenome Consortium

International Cancer Proteogenome Consortium

Learn about ICPC and how the consortium is breaking down silos to advance proteogenomic cancer research worldwide.

Oral Squamous Cell Carcinoma Mutational Profile in Taiwanese Population

Oral squamous cell carcinoma (OSCC) is a major oral cancer subtype that is the fourth most common cancer affecting Taiwanese men. Despite known risk behaviors such as cigarette smoking, alcohol drinking, and betel nut chewing often indulged by Taiwanese men, the genetic contribution to the incidence or progression of OSCC has yet been elucidated in the Taiwanese population.


47th Vice President of the United States Joseph R. Biden, Jr. to deliver keynote address at HUPO2017 Global Leadership Gala Dinner

The Human Proteome Organization (HUPO) and Prof Steve Pennington, UCD, chair of the organizing committee of HUPO2017 (the 16th HUPO World Congress) in collaboration with the National Cancer Institute’s (NCI) International Cancer Proteogenome Consortium (ICPC) announce that...


CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development

The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the reproducibi


CPTAC Team Releases Targeted Proteomic Assays for Ovarian Cancer

Pacific Northwest National Laboratory (PNNL) investigators in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), announces the public release of 98 targeted mass spectrometry-based assays for ovarian cancer research studies.  Chosen based on proteogenomic observations from the recently published multi-institutional collaborative project between PNNL and Johns Hopkins University that comprehensively examined the collections of proteins in the tumors of ovarian cancer patients (highlighted in a paper in...


NCI and FDA to Study Cancer Proteogenomics Together

The National Cancer Institute (NCI) Office of Cancer Clinical Proteomics Research (OCCPR), part of the National Institutes of Health, and the U.S. Food and Drug Administration (FDA) has signed a Memorandum of Understanding (MOU) in proteogenomic regulatory science.  This will allow the agencies to share information that will accelerate the development of proteogenomic technologies and biomarkers, as it relates to precision medicine in cancer.


Announcing the Launch of CPTAC’s Proteogenomics DREAM Challenge

This week, we are excited to announce the launch of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) Proteogenomics Computational DREAM Challenge.  The aim of this Challenge is to encourage the generation of computational methods for extracting information from the cancer proteome and for linking those data to genomic and transcriptomic information.  The specific goals are to predict proteomic and phosphoproteomic data from other multiple data types including transcriptomics and genetics.


VIDEO: Dr. Henry Rodriguez - Proteogenomics in Cancer Medicine

Dr. Henry Rodriguez, director of the Office of Cancer Clinical Proteomics Research (OCCPR) at NCI, speaks with ecancer television at WIN 2017 about the translation of the proteins expressed in a patient's tumor into a map for druggable targets. By combining genomic and proteomic information (proteogenomics), leading scientists are gaining new insights into ways to detect and treat cancer due to a more complete and unified understanding of complex biological processes.


CPTAC Announces New PTRCs, PCCs, and PGDACs

This week, the Office of Cancer Clinical Proteomics Research (OCCPR) at the National Cancer Institute (NCI), part of the National Institutes of Health, announced its aim to further the convergence of proteomics with genomics – “proteogenomics,” to better understand the molecular basis of cancer and accelerate research in these areas by disseminating research resources to the scientific community.


NCI-CPTAC DREAM Proteogenomics Challenge (Registration Now Open)

Proteogenomics, integration of proteomics, genomics, and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research.  By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.


CPTAC Investigators Identify Rogue Breast Tumor Proteins That Point To Potential Drug Therapies

For patients with difficult-to-treat cancers, doctors increasingly rely on genomic testing of tumors to identify errors in the DNA that indicate a tumor can be targeted by existing therapies. But this approach overlooks another potential marker — rogue proteins — that may be driving cancer cells and also could be targeted with existing treatments.


Pages